
( ~  Pergamon 
d. AppL MathsMechs, Vol. 61, No. 2, pp. 325--328, 1997 

© 1997 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PII: S0021-8928(97)00040-3  0021-8928/97 $24.00+0.00 

ENERGY EXCHANGE BETWEEN SEISMIC AND 
ULTRASONIC VIBRATIONS IN AN ELASTIC MEDIUM 

WITH A MICROSTRUCTURET 

N. G. MAZUR, V. N. NIKOLAYEVSKII and G. A. EE 
Moscow 

(Received 6 July 1995) 

The flow rate of seismic energy under conditions of long-wave-short-wave resonance in granular geomaterials (soil or fissured 
mountain rock) is calcudated using a continuous elastic non-linear model with microrotations. © 1997 Elsevier Science Ltd. All 
rights reserved. 

We will use the equations for one-dimensional non-linear waves [1] in a grade-consistent elastic medium with 
mierorotations [2] 

urr  - C~Uxx - ~Uxxxx - VUxUxx + 2XqXpx = 0 

(1) 
~ - c ~  + o ~  - ~ (C~x~ - . ~ )  = o 

to estimate the eners~' exchange in the case of long-wave-short-wave resonance (LSR). Here u is the displacement 
in the seismic wave, ,p is the mierorotation, Cl and cz are, respectively, the nominal velocities of seismic and micro- 
rotational waves, and 5, v, 0 ~  X, p. are the elastic and inertial coefficients. On the basis of  a more detailed analysis 
of non-linear coefficients satisfying the grade-consistent theory [1], it can be shown that 

la = Z (2) 

We will restrict o~a'selves below to a linear analysis (with respect to energy[). The standard method yields the 
following expressions for the intensity of the seismic energy flux and the corresponding ultrasonic flux 

2 * * *  • 2 W s = c~c%kspu 2 / 2, Wus = c2¢o r pj~0 / 2 (3) 

Here p is the density, pj is the specific moment of inertia of granules of the medium, ks is the seismic wave number, 
2 2 4 , . 0~, = c i ~  + 5ks is the dispersion relation for seismic waves and co and k are the frequency and wave number 

of ultrasound excited during LSR [1]. 
The LSR condition has the form [1] 

dc%s (k*) = c I 
dk 

where c0~ = c ~  + co~ is used as the dispersion relation for ultrasonic waves. In explicit form we have 

co* c~k'[c~(k') 2 +to02] - ~  =c~, --- c0us(k*) 

We recall [1, 3] that in an LSR analysis the variables u and cp are represented in the form of series of powers of 
a small parameter  

= ~u.,. / ~'s = k,. / ku.,,~l 

where ~. = 2~/k is the wavelength. The "slow" variables ~ and x are related to the initial "fast" variables X and T 
as follows: 

~ = £ ( X - c g T ) ,  X =£2T,  cg = d o u s / d k  

Thus, taking into acx~tmt the expansions in terms of a small parameter [1, 3] 
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u=£u  1+0(£2),  t p = e q t p l + O ( £ q + l ) = E q ( A e i ~ + c . c . )  

we can represent the energy fluxes (3) in the form 

W s = e2pC2Osksu 2 1 2, Wus = e2qpjc203*k*lAI 2 12 

We know [1, 3] that the LSR equations contain the seismic deformation V = ~ u l / ~  ~ U l k  s instead of the 
displacement ul, where the estimate containing the wave number can also be obtained from the asymptotic series 
[4]. Thus for c2 < cl, using the expressions for ultrasonic waves 

k* = Cl03° 03*-  c203° 
 _c2 

c 2 *k* = Cl03°2 o3" _ 2 
, - - ~  m_ Cu s - -  03 4 -~? c~ 

we have 
1 c 2 3 

Wus = 2Pj032 ~ ~ t  'a12 

where [1] 

ZI =lzIct  "2, E2q = 1~3ZI I (4) 

and Z1 is the reduced non-lineafity coefficient. Note that the initial non-linearity coefficient (2) is assumed to be 
small, and the power exponent q is chosen to satisfy the transformation (4). 

If k 4 ,~ k2~c2//i, for seismic waves we have 

Ws = e2pc203sksV2k-~2 / 2 = e2pc3V 2 / 2 

Thus, the required ratio of the intensifies of the energy fluxes of high and low frequencies can be written in the form 

W~,.,. _ j032 c 2 e Ial 2 

w , .  - c? 4 - 4  x, v ~ (5) 

The complex amplitudeA(~, 1]) and deformation V(~, I1) satisfy the LSR equations thus obtained (after correcting 
the misprints in [1, 3]) 

OxV = +clO~lal 2 , 2i03"~A + (c 2 - c 2 ) o ~ a  = [(k*)2 c~ + Ix]VA 

Estimates for the values of A and Vare found by changing to the "canonical" LSR system 

3tL = +OxlSI 2 , 2i3tS + ~xx S = 2LS 

for which we make a scalar replacement of variables 

t = a x ,  x = ~ ,  A=×S,  V = ~ L  

(6) 

Here (again correcting the misprints in [1, 3]) 

030 c.2 ~ = 
0~---- C 2 ~ ,  

d = (1- . , )c?  + . , 4 .  

03°c* Z = 2 ,  x 2 = 2 c * ~ 2  2 - c  2 

4 . -  4 '  c,~2 

~t I = t t030 2 

The coefficients (2) were taken to be small: Ix = X <~ 1, and so the simpler relation c. = cl can be used. 
Finally, we have 

W~'s - K ISI2 j 032 c2 
~. - L~' K= 2 c? ~ _ 4  z, (7) 
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where K is the coeffi(ient of energy exchange. 
Quantitative expressions for K can be obtained using the following values (which are typical of porous mountain 

rock) 

C l = 1 0  3m/s, c 2 = 1 . 5 x 1 0  3m/s, ~ = 1 0 m ,  ~ q u - d = 1 0  -3 

too = 10 3 s -t, j = d 2 = 10 -~ m 2, •1 = 10-7, s = ~ = 10 -~ 

(d is the typical length of granules). This gives an estimated order of magnitude K - 10 -3, corresponding to the 
gradual accumulation of the non-linear effect (ultrasonic energy) at the typical large distances of the range of actual 
seismic waves. As we know [5], ultrasound effectively influences the microstate of a two-phase mixture (such as 
oil and water) in the pore space of granular media, transforming the mixture to a micro-emulsive state, thereby 
improving the oil recovery of deposits. 

We will now obtain an analytic estimate for the coefficient [ S 12/L 2 which appears in expression (7). By the 
replacement of variables S = Ilt2e/~, Ox9 = w [1], Eqs (6) take the form encountered in fluid dynamics 

O,l+Ox(lw)=O, O,L+Oxl=O 

W 2 

.L 2,2 (8) 

In the limit of weak dispersion axl/I <~ 1, derivatives of the second and third orders can be neglected. Then system 
(8) can be put in Riemann form [1] 

Otri+Vi(r)Oxri=O ( i=1 ,2 ,3 ,  r=,(r l , r2,r3)  ) (9) 

if we introduce the new variables 

where A~ are the rool~ of the equation 

r /=  L +  w 2 ( 3 A i - 2 ) A i  12 (lO) 

A(A - 1) 2 = lw -3 (11) 

(Fig. 1), and V/= w~i. If 0 < Iw -3 < 4/27~ all the roots of Eq. (11) are real and system (9) is hyperbolic. 
We will use the combinationp = Al(Iw -°) as a parameter. For givenp the roots A2, A3 satisfy a quadratic equation 

and thus 

A2. 3 = 1 - p l 2 ~ - f l p ( 4 - 3 p )  12 

A(A-1) 2 

4f27 

1,14/"3 

2/27 

i 

! 

A 1 

\ 
- ° °  

t 

i 
a 

Fig. 1. 
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Fig. 2. 

Substituting these expressions into (10), we obtain 

r i =L+w2hi(p) ,  i = 1 , 2 , 3  

h i (p)  = ( 3 p - 2 ) p  h 2 ~ ( p ) = l [ 2 + 2 p - 3 p 2  - T ( 4 - 3 p ) ~ / p ( 4 - 3 p ) ]  1 ,- 

(12) 

Let us consider the particular solutions of (9) for rl = 0, r3 = R = const. These are known as simple Riemann 
waves, in which all the quantities are functions of one variable,p say, found from other equation OtP + V(p)0xp = 
0, where V(p) ffi V 2 ( 0  , ? '209) , R )  = w ( p ) A 2 ( p ) .  

The unknown values in (12), expressed in terms o fp  (under conditions rl = 0, r 3 = R), are 

w 2 = R D  -l, L = - R h I D  -], l = R ~ p ( p - 1 )  2D - ~  

r 2 = R(h 2 - h  l)D -l 

V = ~ R ~ [ 2  - p - ~ p ( 4 - 3 p ) ] y 2 D  -Y2 

F =  ISI2 - I 4R-  ~ ( p - l )  2 D ~  

- L 2  - 7  = p(3p 2) 2 

D = h 3 - h t = ~ [2 + 6 p -  9 p  2 + (4 - 3p)~/p(4 - 3p)  ] 

Figure 2 shows graphs of the functions L(p), I(p), V(p), F(p). 
Note that the unlimited increase in F a sp  ~ 0 (or L ~ 0) has no physical interpretation, because it invalidates 

the series of [1] required for LSR. 
A reduction in the values of V(p) (and naturally also V(L)) stabilizes the leading edge of the wave, which enters 

the medium with increasing amplitude, whereas the tail of the wave breaks up. In that case the dispersion terms 
must be taken into account in the LSR system. 
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